

For research use only

ISO9001

M-MLV Reverse Transcriptase

Product	Quantity	Cat. No.	Remarks
M-MLV Reverse Transcriptase	10,000 U	EBT-1027	200 U/μl, RNase H+
	50,000 U	EBT-1028	200 U/μI, RNase H+
	10,000 U	EBT-1501	200 U/μI, RNase H ⁻
	50,000 U	EBT-1502	200 U/μl, RNase H-

Description

M-MLV (Moloney Murine Leukemia Virus) Reverse Transcriptase is an RNA-dependent DNA polymerase that can be used in first strand cDNA synthesis using total or polyA+ RNA as templates. M-MLV Reverse Transcriptase is purified from a recombinant *E.coli* clone that carrying *pol* gene of M-MLV and consists of a single subunit with a molecular weight of 71 kDa. The RNase H activity of M-MLV Reverse Transcriptase is weaker than the commonly used Avian Myeloblastosis Virus (AMV) reverse transcriptase.

M-MLV Reverse Transcriptase RNase H minus product is a genetically modified enzyme to remove the associated RNase H activity. It can be used in cDNA synthesis with long messenger RNA templates (>5 kbp).

Storage Buffer

200 unit/ μ l in 20 mM Tris-HCl, pH7.5, 200 mM NaCl, 0.1 mM EDTA, 1 mM DTT, 0.01% NP-40, and 50% Glycerol.

Application(s)

First strand cDNA synthesis from total RNA or polyA+ RNA, Primer extension, RT-PCR.

Unit Definition

One unit is the amount of enzyme required for incorporation of 1 nmole of dNTP into acid-insoluble material for 10 min at 37°C.

5x Reaction Buffer

250 mM Tris-HCl, pH 8.3, 375 mM KCl, 15 mM MgCl₂, 50 mM DTT.

QC tests

Activity, SDS-PAGE purity, endonuclease activity test, performance tests.

Storage Condition

Store at -20℃.

Heat Inactivation

M-MLV Reverse Transcriptase can be inactivated by incubation at 90°C for 10 min.

㈜ **엘피스바이오텍** www.elpisbio.com (302-854) 123-12 Chunglim-Dong, Seo-Gu, Taejeon, Korea Tel: +82-42-581-8448. Fax: +82-42-581-8449

First Strand cDNA Synthesis

- Add 1 µl of 100 pmol/µl primer (random hexamer or oligo d(T)₁₅) or 10 pmol/µl gene specific anti-sense primer per microgram of the total RNA sample in a total volume of ≤10 µl in nuclease-free water.
- 2. Heat the tube to 70°C for 5 min to melt secondary structure within the RNA template.
- 3. Cool the tube immediately on ice, then spin briefly to collect the solution at the bottom of the tube.
- 4. Add the followings to the primer/RNA mix in the order shown.

M-MLV 5X Reaction Buffer	4 μΙ
dNTP mix (2.5 mM each)	4 μΙ
M-MLV RT 200 units	1 μΙ

Add nuclease-free DW to final volume of 20 µl

- 5. Mix gently by flicking the tube, and incubate for 60 min at 37°C or 42°C.
- 6. To stop reaction, incubate for 5 min at 94°C.

Notes

- The cDNA by reverse transcription can be used for subsequent PCR reactions and for the cDNA library constructions.
- If there is concern about possible RNase contamination in the reaction, Recombinant RNase Inhibitor may be added to the reaction to preserve RNA integrity.

PCR

1. Add the following components to the PCR tubes (for 20 µl total reaction).

Taq (5 unit/μl)	0.2 μΙ
cDNA by RT reaction	0.1-1 μΙ
Primers (10 pmol/μl)	0.5 μl each
dNTP mix (2.5 mM each)	1.6 μΙ
10x PCR Buffer	2 μΙ

Add nuclease-free DW to final volume of 20 ul

2. Perform PCR reaction as follows.

PCR conditions		(100bp - 1kb)		(1-3kb)	
	94℃	5 min		5 min	
	94℃	30 sec	l	30 sec	l
	50-60 °C ª	30 sec 30 sec 45 sec	25-40	30 sec 30 sec 1.5 min	25-40
	72 ℃	45 sec		1.5 min	l
	72 ℃b	5 min		5 min	

a, Optimal annealing temperature is dependent on the melting point of primer pair

b, Final extension at 72 °C can be omitted if the purpose of PCR is not for a TA cloning

c, The number of PCR cycle is dependent on a copy number of target mRNA. For a rare copy gene, increase cycle number