

For research use only

ISO9001

Pfu DNA Polymerase

Product Description	Quantity	Cat. No.	Remarks
Pfu DNA Polymerase	500 unit	EBT-1011	5 unit/μl
	500 unit	EBT-1012	with 1 ml dNTP mix

Description

Recombinant Pfu DNA polymerase is purified from an *E.coli* strain carrying a plasmid with the cloned gene encoding *Pyrococcus furiosus* DNA polymerase. The enzyme catalyzes the incorporation of nucleotides into duplex DNA in the $5' \rightarrow 3'$ direction in the presence of Mg^{2+} at $70-80^{\circ}$ C. Pfu DNA Polymerase exhibits $3' \rightarrow 5'$ exonuclease (proof-reading) activity, but has no detectable $5' \rightarrow 3'$ exonuclease activity.

The amplified products by Pfu DNA polymerase can be used for a gene cloning with decreased error rate, and for a site-specific mutagenesis. Pfu DNA Polymerase, like any other polymerases showing proof-reading activity, generates PCR products with blunt end.

Pfu DNA Polymerase is recommended for an amplification of DNA fragment smaller than 7 kbp. Pfu DNA Polymerase is provided with 10x optimized reaction buffer.

Storage Buffer

5 unit/µl in 50 mM Tris-HCl, pH8.2, 0.1 mM EDTA, 1 mM DTT, 50% Glycerol.

Unit Definition

One unit of enzyme catalyzes the incorporation of 10 nanomoles of deoxynucleotides into a polynucleotide fraction in 30 min at 72°C.

10x Reaction Buffer

200 mM Tris-HCl, pH9.0, 100 mM KCl, 100 mM (NH $_4$) $_2$ SO $_4$, 20 mM MgSO $_4$, 1% Triton X-100, 1 mg/ml BSA.

QC tests

Activity, SDS-PAGE purity, performance tests, genomic DNA contamination test, confirmation test for the absence of endo and exonucleases.

Storage Condition

Store at -20°C

(3°2-854) 123-12 Chunglim-Dong, Seo-Gu, Taejeon, Korea Tel: +82-42-581-8448. Fax: +82-42-581-8449

Standard Protocol

1. Prepare 50 µl PCR solution as follows:

PCR grade distilled water : $-\mu$ l 10x reaction buffer : 5μ l 10 mM dNTP mix (2.5 mM each) : 4μ l Primer (10 pmol/ μ l) : 1μ l each Template : 1-10 ng Pfu DNA Polymerase : 0.5μ l (2.5 unit)

Adjust final vol. to 50 µl with PCR grade distilled water

2. Set PCR cycling as follows:

Initial denature at 95°C: 3 min

		<1 kbp	1-7 kpb
Denature	95°C	30 sec	30 sec
Anneal	Tm-4°C	30 sec	30 sec
Extend	72°C	45 sec	30-60 sec/1 kbp

²⁵⁻⁴⁰ PCR cycles

Trouble-Shooting

- 1. No products
 - Confirm your template is intact: Try another reaction with a result assured primer pair and templates
 - Be sure all the component are correctly added and working well: Sometimes low graded dNTP may inhibit the reaction, and degraded primers can result in low sized PCR fragments.
- 2. Smear bands or smeared background
 - Reduce template concentration: High concentration of template can lead to smearing of PCR products. Generally, 1-10 ng of plasmid DNA is working well
 - Increase annealing temperature
- 3. Non-specific bands
 - Increase annealing temperature
 - Consider using PCR additives, like 1-2% DMSO and 0.5-1x Q buffer
 - Confirm specificity of your primers
- 4. Low vield
 - Increase enzyme concentration in the reaction
 - Increase PCR cycle number
 - Be sure appropriate concentration of your template is added
- 5. Mutation is found
 - Increase initial template concentration
 - Reduce PCR cycle number
 - Reduce dNTP concentration added in PCR mix

^{*}Note: Always, Pfu DNA polymerase should be added last to the mixture